Real-Time Handwritten Letters Recognition on an
Embedded Computer Using ConvNets

Dennis Nifiez Ferndndez
Universidad Nacional de Ingenieria
Lima, Peru
dnunezf@uni.pe

Abstract—This paper describes the design and implementation
of a convolutional neural network for 26 handwritten letters
recognition on a regular embedded computer. Recognition task
is carried out using a customized convolutional neural network,
designed to work with low computational resources. Further-
more, training was conducted on the recently published dataset
EMNIST. The experimental results show that the proposed neural
network achieves an outstanding accuracy rate compared to
similar architectures, also, inference shows a fast response time
on a Raspberry Pi 3 board.

Index Terms—ConvNets, Convolutional Neural Networks, Em-
bedded Computer, Human-Machine Interface.

I. INTRODUCTION

Real-world tasks such as control of touchless screens,
interaction with robots, digitization of texts and more, directly
or indirectly depend on efficient handwritten letter recognition
systems. For this reason, recognition of these characters has
been spreadly studied during the last decades. But only few
works implemented handwritten letters recognition by using
the new EMNIST dataset. Works related to this topic usually
focus on handwritten digits [1] [2] and not on handwritten
letters since these are composed by more characters.

In this work, we propose a real-time handwritten recognition
system to work with low computational resources and low
power consumption. In order to achieve these requirements,
we implemented a customized ConvNet with few layers and
few parameters. This architecture is very important since
power consumption, time response and recognition rate depend
mainly on it. In the following sections we will explain in detail
this architecture as well as how the whole system works.

II. RELATED WORK

Early works on handwritten character recognition are based
on hand-crafted extracted features [3] and SVM classifiers. For
instance, [4] uses Fourier descriptors and achieves an accuracy
of 86.66% on the Chars74K dataset. However, in recent years,
Deep Learning techniques has been shown excellent results on
characters recognition. As evidence of this, [5] accomplishes
an accuracy of 96.87% on the CASIA-OLHWDBI1.1 dataset
for Chinese character recognition using convolutional neural
networks (ConvNets) based on domain-specific knowledge.
Even, more recent works [6] [7] propose application of Gabor
filters in pre-processing step (before the ConvNet) to improve
the recognition rate of the whole system.

978-1-5386-8375-0/18/$31.00 ©2018 IEEE

Sepidehsadat Hosseini
Seoul National University
Seoul, South Korea
sepid@ispl.snu.ac.kr

III. PROPOSED METHOD
A. Overview

The proposed system for handwritten letters recognition
works in real-time with RGB images captured from a cam-
era. Additionally, this system was designed to be executed
on embedded computers with low computational resources,
without GPU support and using a low power consumption.
Computational and timing requirements of this system highly
depend on the ConvNet, therefore, it was designed with a
customized architecture.

The selected embedded platform for this recognition system
was the Raspberry Pi 3 since its versatility and its low cost
make of this a perfect option. The system works on this
embedded computer as follows: First, the camera captures
RGB images of 400x300 pixels at 30 frames per second. Then,
the image is transformed to a binary image, thresholding the
strokes of the characters. Later, the region that contains the
handwritten letter is extracted and adjusted in order to be used
as input of the ConvNet. Finally, the result of the ConvNet is
shown in the screen. Fig. 1 depicts the system.

D o~
extraction recognition

Fig. 1. Block diagram of the proposed recognition system.

B. Region Extraction and Pre-Processing

Separate the handwritten shapes from the background is
the first and an important step for the proposed system. In
this regard, we apply several image processing techniques
that works in the following way: At beginning, handwritten
lines are extracted based on color thresholding, so the whole
image is converted to a binary image. At this point, the square
region that contains the handwritten letter is extracted. Then,
morphological opening operations (first erode and then dilate)
are applied to the handwritten lines in order to remove small
objects from the foreground. Next, morphological closing
operations (first dilate and then erode) are applied to remove
small holes from the foreground. After these operations, the
moments of the transformed images are calculated. Finally,
based on these moments, the smallest areas are discarded since
these are mainly produced by noise.

C. Handwritten Letters Recognition

The design and implementation of the recognition system
has two steps: training and inference. Both steps will be
explained in detail in the next paragraphs.

At the training step, the model learns from a dataset based
on the back-propagation algorithm [8], wich is a method used
to calculate a gradient and needed in the estimation of the
weights of the network. In this regard, the deep learning
framework used to deploy and train our model was Caffe
[9]. This is a framework made with expression, speed, and
modularity; these features make of Caffe a good option for our
project. As well, since training step demands high computa-
tional resources, this is usually performed on computers with
powerful GPUs. In this project, training step is conducted on a
computer with the next computational resources: Intel Core 7
Octa-Core CPU @3.8 GHz, 12 GB RAM, and GeForce GTX
1050 Ti GPU. After training step, we obtained the .caffemodel
file with the trained weights of our model.

Afer the training step, the inference step is carried out.
This means that the trained parameters are used to perform
classification in real-time. Thereby, we use the .caffemodel
file into our real-time recognition system in order to identify
different handwritten letters. Because our project focuses on
obtain a fast time response using low computational resources,
this system was fully implemented in C++ and using OpenCV
libraries. Furthermore, the hardware device used to conduct
the inference phase was the Raspberry Pi 3 platform, wich
has the following computational resources: ARM Cortex A53
Quad-Core CPU @1.2 GHz and 1 GB RAM.

D. Handwritten Letters Dataset

Several datasets can be found in specialized websites,
however the EMNIST Dataset (Extended Modified National
Institute of Standards and Technology Dataset) [10] is the
most remarkable. So, this dataset was used for training and
testing our customized deep neural model. The EMNIST
Letters Dataset is part of the EMNIST Dataset [10], and is
composed by handwritten characters derived from the NIST
Special Database [11] and converted to a 28x28 pixel image
format. Moreover, this handwritten letters dataset has a total
of 145,600 uppercase and lowercase letters divided into 26
balanced classes, see Fig. 2. We used 86% of these images
for training and 14% for testing, it means that 124,800 images
were used for training and 20,800 images for testing.

AlBICIDIE
albleldle

Fig. 2. Samples of letters used for training and testing.

E. Convolutional Neural Network

As explained in the last sections, we focused on a small
ConvNet with the aim of work on embedded computers using
low computational resources and low power consumption.
Since each handwritten letter is composed of strongly different
strokes, recognition doesn’t need large images and complex
ConvNets to extract useful features. In this way, we only use
binary images of 28x28 pixels and a small deep neural network
with few layers and parameters.

The proposed ConvNet is formed by two convolutional
layers with kernels of 5x5 size each one, a non linearity
(ReLU) activation function and a max-pooling layer after
every convolutional layer, and two full-connected (FC) layers
of 500 neurons lenght followed by a final 26-way softmax.
Furthermore, this ConvNet is composed by only 60K learnable
parameters. This number of parameters is significantly less
than the AlexNet network (60M learnable parameters and
650,000 neurons) [12] and the GoogleNet network (6.8M
learnable parameters) [13]. The architecture used for hand-
written letter recognition is presented in Fig. 3.

s4
50@7x7 F5 F6

20@28x28 c3 500 500
S2 50@14x14 r Output
20@14x14 ‘r 26
5x5 + F+C
Convolutlon Subsampllng COHVO\UUO” Subsampl\ng RelU RelU

ReLU ReLU

Fig. 3. Architecture of the proposed ConvNet.

The most important components of a ConvNet are the
convolutional layers, which detect dominant features pre-
sented in input images. In our neural network, the convo-
lutional kernels of the first layer show characteristic hori-
zontal/vertical/diagonal grayscale features of the handwritten
letters, see Fig. 4. As well, max-pooling is applied after each
convolutional and full connected layers to add translation
invariance, which help with position independence. Since
cascade linear convolutions adresses to a linear system, a
ReLU activation function is added after each convolutional
and full connected layer to add non linearity to the network.
This neural network considers also dropout regularization to
selectively ignore some neurons during training step, avoiding
in this way overfitting of the model. Finally, the outputs of
the last convolutional layer are flattened and connected to the
output layer through two fully-connected layers of 500 neurons
length each one.

FE. Training Step

We trained our proposed ConvNet using 124,800 images
(4,800 images per class), and testing on 20,800 images (800
images per class). As mentioned in previous sections, training
was performed on a Nvidia GeForce GTX 1050 Ti GPU. The
training itself is carried out using the Caffe framework through
a series of forward-propagation and error back-propagation

W LR
b o 20 B
L =0Ty g
FEEEE

Fig. 4. Learned convolutional kernels at the first convolutional layer.

mechanisms in order to adjust the weights of the ConvNet.
In this way, training uses the learning rate to control how
much we adjust the weights of our ConvNet with respect to
loss gradient. Therefore, training is conducted based on several
pre-defined parameters, see Table I, that define the variation of
this learning rate as follows: The training process starts with
a learning rate equals to the base learning rate (base_lr) and
changes over time using ’Inverse Decay’ learning policy. It
means that the learning rate descreases as a function of the
iteration number (iter): base_lr x (1 + gamma x iter) Power,
Since training consists of adjust the weights of the ConvNet,
the momentum indicates how much of the previous weight
will be retained in the new calculation.

TABLE I

TRAINING PARAMETERS

Parameter Value
Learning policy Inverse Decay

Base learning rate 0.01
Gamma 0.0001
Power 0.75

Momentum 0.9

Batch size 128
Max. iterations 5,000

Epoches 5.1

IV. EXPERIMENTAL RESULTS

A. Experimental Results of the Model

After training our model on the EMNIST Letter Dataset,
we evaluated its performance on the testing images, which
were extracted from EMNIST Letter Dataset, using several
consecutive iterations and analyzing the confusion matrix.

First, since each training process of the ConvNet initializes
with random weights, the accuracy of every training iteration
has a different value. Thereby, in order to have accurate
performance metrics of the designed model, we evaluated the
model on 40 continuous iterations. After that, our architecture
for handwritten recognition shows an outstanding maximum
accuracy of 94.2%, an average accuracy rate of 93.4% and a
standard deviation of 0.27.

Another useful performance metric is the confusion matrix.
This presents a visualization of the misclassified clases and
helps to add more training images in order to improve the
model. The confusion matrix of our model is showed in Fig. 5
and discloses which letters are misclassified. These errors of
classification are mainly because by shape similarities, for
instance, letter 'L’ sometimes is confused with 'I’, ’Q’ with
’G’, and ’D’ with O’. In fact, the letters mentioned above are
difficult to discern, even for a human.

Y741 5212 4 001011031410 041201 1 15
B 2 21017 0002010011001 00O0 0 2
c o 14 0001003 00O0O0OO0OO0OT1TO0T1T3O0O0O0O0TO0
D 1 ogygeo o o o 2 1 0 0 0 131 4 1 01 0 0 0 O0 0 O
E O 31 11 1+ 0201 2 0001 1 2 0 3 2 000 0 1
F 0 11 23 11111 00 0100 4 116 000 2 10
G 13 7 1 0 41 o1 0 0 0 1 5 0152 6 1 0 0 0 0 2 0
H1 1 00 1 0 OfgAHO O 7 6 215 0 0 0 0 0 0 2 0 1 2 00
10 01 o011 1 Oofgg¥41 1190 0 1 000 01T 1 01 1 0O

J O 103 01 3 137 o5 0 0001025110110
K 0 2 0 0 2 0 0 8 1 0 4 0 2 0 0 0 2 0 3 1 1 1110 0
L OO S5 0 0 O0 0 42160 OFggYgYo 0o 1 0 1 0 0 0 0 0 0 0 1 0
M 0O O0OO0OOOOOTM1TO0TUO0 2 OpgHsos 000 0 01 1 02 000
N1 00 O0OOOT 6 01T 0O 740 1 0 2 00 3 2 0 2 00
o101 7 0O0O0O0O0O0O0OUOUO O 3KAKHO 00O O 6 0 O0O0O0O0
PO OOTG61 3 00O0O0O0OT1TTO0T1T 2gKYO 4 01 01 0 0 0 O
@3 11 3 2 1702 0 1 1 0 2 13 2[5y 02 3 00 0 3 1
R 2 2100 20010 410 3 000 0 5 017 0 5 3 1
s 2101025109 0001101 O0Ofggoo o0 o0 000
T1100O02 00201100100 2 OKgHOOO 2 2 1
voo110O0O0O30O0OO0OO0OT1TTI1TO0OO0OTUO0OO 1T O 1 1 10
vooO®OoO?“1TO0O0OU O0OOM™1TH1TO0O0TO0OO2U0000 0 1 561 170
woO®OOQOSQO®OoOO®O0OZ2D0410O028 00000011 2KAO O O
x0o0oO0O0H“1To0OOH™11TM1T1 7 21300000 2 01 O0pggs 1
y 0 0017 000 10102 00001 2 0 3 2 1 0 7O
z0O0OOOO?=220410101 001001 0 00 0 0
A B CDEF G H I J KL MNUOWPOQRSTUV WX Y Z

Fig. 5. Confusion matrix of the designed model.

The Table II shows the results and a comparison with
some previously published results. For the EMNIST dataset,
it’s difficult to find similar works due its recently publica-
tion. However, works carried on a similar dataset, so called
NIST dataset, were used as comparative references. In this
table we can see a high accuracy rate for the proposed
neural network despite the fact that the EMNIST dataset uses
uppercase/lowercase letters and the NIST dataset only uses
lowercase letters.

TABLE 11
AVERAGE ACCURACY OF THE EXPERIMENTS + STANDARD DEVIATION
AND RESULTS FROM THE LITERATURE (%)

Proposed Published results
CNN and paper
Dataset EMNIST-26 | EMNIST-26 NIST-26 NIST-26
Method CNN OPIUMS CNN HMM
Accuracy (%) | 93.4 + 0.27 78.0 [10] 92.3 [14] | 84.0 [15]

B. Experimental Results of Inference

Once the learned model is obtained using the Caffe frame-
work, we get the the architecture and learned weights on a
single .caffemodel file. Then, this file (the information of our
trained model) is downloaded into the real-time recognition
system, which was implemented on the Raspberry Pi 3 using
C++ language. Finally, the overall handwritten letters recogni-
tion system is evaluated in real-time under different conditions
and perturbations.

The implementation of the proposed recognition system on
a common or standard personal computer has no issues due
its relatively high computational resources. However, when a
recognition system is implemented on an embedded computer
like the Raspberry Pi 3 we have two major barriers working
against us: restricted RAM memory (only 1 GB) and limited
processor speed (four ARM Cortex-A53 @1.2 GHz).

Handwritten Letters Recognition Handwritten Letters Recognition

Handwritten Letters Recognition Handwritten Letters Recognition - o x

Handwritten Letters Recognition

Fig. 6. Results of handwritten letters recognition on a Raspberry Pi 3.

In spite of the processing and memory limitations mentioned
above, our real-time recognition system shows promising re-
sults during evaluation process. Fig. 6 depicts its performance
in real enviroments. As you can observe, the system correctly
recognizes different uppercase and lowercase handwritten let-
ters although some shape distortions, low light conditions, and
different sizes. In addition to this, we obtain an fast response
time of about 21.9 ms (average from 40 iterations) to classify
a single handwritten letter.

The Table IIT shows some details of CNNs tested on the
Raspberry Pi 3 platform. As you can see, the proposed CNN
achieves the fastest time response by using the lowest power
consumption because its simple but efficient design.

TABLE III
RESPONSE TIME AND POWER CONSUMPTION FOR EVALUATION OF
DIFFERENT CNN MODELS ON A RASPBERRY PI 3 USING CAFFE

Proposed | VGG_F | NiN | AlexNet | GoogLeNet
Model CNN [16] [17] [12] [13]
Layers 9 13 16 11 27
Power (W.) 0.620 0.760 | 0.840 | 0.750 0.790
Time (s.) 0.022 0.857 | 0.553 1.803 I.175

V. CONCLUSIONS

This paper introduces a CNN architecture for handwritten
letters recognition on images obtained with a camera. So,
this system recognizes 26 letters on an embedded computer
with limited computational resources and using low power
consumption. The results show an accuracy rate of 93.4% and
a response time of 21.9 ms. This demonstrates that simple
CNNs are capable to solve relative complex classification
problems. In addition, this work is a reference for future
projects that make use of the recently published EMNIST
dataset or deal with similar recognition tasks.

REFERENCES

[1] E. Bouvett, O. Casha, I. Grech, M. Cutajar, E. Gatt and J. Micallef,
”An FPGA embedded system architecture for handwritten symbol recog-
nition,” 2012 16th IEEE Mediterranean Electrotechnical Conference,
Yasmine Hammamet, 2012, pp. 653-656.

[2] L. B. Saldanha and Ch. Bobda. An embedded system for handwritten
digit recognition. J. Syst. Archit. 61, 10 (Nov. 2015), 693-699.

[3] N. Sharma, T. Patnaik, B. Kumar, “Recognition for Handwritten English
Letters: A Review”, International Journal of Engineering and Innovative
Technology (IJEIT), India, 2013.

[4] A. Gupta, M. Srivastava and C. Mahanta, ”Offline handwritten character
recognition using neural network,” 2011 IEEE Int. Conf. on Computer
Applications and Industrial Electronics (ICCAIE), Penang, 2011.

[5] W. Yang, L. Jin, Z. Xie, and Z. Feng, "Improved deep convolutional
neural network for online handwritten Chinese character recognition
using domain-specific knowledge,” 2015 13th Int. Conf. on Document
Analysis and Recognition (ICDAR 2015), Tunis, 2015, pp. 551-555.

[6] S. Hosseini, S.H. Lee, and N.I. Cho, “Feeding Hand-Crafted Features
for Enhancing the Performance of Convolutional Neural Networks”,
arXiv:1801.07848v1, 2018.

[7]1 Nuinez Ferndndez D., Kwolek B. Hand Posture Recognition Using
Convolutional Neural Network. In: Mendoza M., Velastn S. (eds)
Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. CIARP 2017. Lecture Notes in Computer Science, vol
10657. Springer, Cham.

[8] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1988.
Learning representations by back-propagating errors. In Neurocomput-
ing: foundations of research, James A. Anderson and Edward Rosenfeld
(Eds.). MIT Press, Cambridge, MA, USA 696-699.

[9] Y. Jia, et al.. Caffe: Convolutional Architecture for Fast Feature Em-
bedding. In Proceedings of the 22nd ACM international conference on
Multimedia (MM ’14). ACM, New York, NY, USA, 675-678.

[10] Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST:
an extension of MNIST to handwritten letters. 2921-2926.

[11] P.J. Grother, K. K. Hanaoka, “NIST Special Database 19 Handprinted
Forms and Characters Database”, National Institute of Standards and
Technology, USA, 2016.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. ImageNet clas-
sification with deep convolutional neural networks. 25th International
Conference on Neural Information Processing Systems - Volume 1
(NIPS’12), F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.), Vol. 1. Curran Associates Inc., USA, 1097-1105.

[13] C. Szegedy et al., "Going deeper with convolutions,” 2015 IEEE Conf.
on Computer Vision and Pattern Recogn. (CVPR), Boston, MA, 2015.

[14] D. C. Ciresan, U. Meier, L. M. Gambardella and J. Schmidhuber,
”Convolutional Neural Network Committees for Handwritten Character
Classification,” 2011 International Conference on Document Analysis
and Recognition, Beijing, 2011, pp. 1135-1139.

[15] P. R. Cavalin, A. de Souza Britto Jr., F. Bortolozzi, R. Sabourin, and L.
E. S. de Oliveira, An implicit segmentation-based method for recognition
of handwritten strings of characters. in SAC06, 2006, pp. 836840.

[16] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Return of the Devil in the Details: Delving Deep into Convolutional
Nets. In Proceedings of the British Machine Vision Conference 2014,
pages 6.16.12. British Machine Vision Association, 2014.

[17] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. In
International Conference on Learning Representations (ICLR) 2014.

