Object tracking using OpenCV 3.3.0 and C++/Python
OpenCV 3 comes with a new tracking API that contains implementations of many single object tracking algorithms. There are 6 different trackers available in OpenCV 3.2 — BOOSTING, MIL, KCF, TLD, MEDIANFLOW, and GOTURN. as mentioned before, OpenCV 3.x has tracking libraries and is easy to implement object tracking using several approaches. The code shows as follow is included here: [link].
We then open a video and grab a frame. We define a bounding box containing the object for the first frame and initialize the tracker with the first frame and the bounding box. Finally, we read frames from the video and just update the tracker in a loop to obtain a new bounding box for the current frame. Results are subsequently displayed.
C++
#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp>
#include <opencv2/core/ocl.hpp>
using namespace cv;
using namespace std;
// Convert to string
#define SSTR( x ) static_cast< std::ostringstream & >( \
( std::ostringstream() << std::dec << x ) ).str()
int main(int argc, char **argv)
{
// List of tracker types in OpenCV 3.2
// NOTE : GOTURN implementation is buggy and does not work.
string trackerTypes[6] = {"BOOSTING", "MIL", "KCF", "TLD","MEDIANFLOW", "GOTURN"};
// vector <string> trackerTypes(types, std::end(types));
// Create a tracker
string trackerType = trackerTypes[2];
Ptr<Tracker> tracker;
#if (CV_MINOR_VERSION < 3)
{
tracker = Tracker::create(trackerType);
}
#else
{
if (trackerType == "BOOSTING")
tracker = TrackerBoosting::create();
if (trackerType == "MIL")
tracker = TrackerMIL::create();
if (trackerType == "KCF")
tracker = TrackerKCF::create();
if (trackerType == "TLD")
tracker = TrackerTLD::create();
if (trackerType == "MEDIANFLOW")
tracker = TrackerMedianFlow::create();
if (trackerType == "GOTURN")
tracker = TrackerGOTURN::create();
}
#endif
// Read video
VideoCapture video("videos/chaplin.mp4");
// Exit if video is not opened
if(!video.isOpened())
{
cout << "Could not read video file" << endl;
return 1;
}
// Read first frame
Mat frame;
bool ok = video.read(frame);
// Define initial boundibg box
Rect2d bbox(287, 23, 86, 320);
// Uncomment the line below to select a different bounding box
bbox = selectROI(frame, false);
// Display bounding box.
rectangle(frame, bbox, Scalar( 255, 0, 0 ), 2, 1 );
imshow("Tracking", frame);
tracker->init(frame, bbox);
while(video.read(frame))
{
// Start timer
double timer = (double)getTickCount();
// Update the tracking result
bool ok = tracker->update(frame, bbox);
// Calculate Frames per second (FPS)
float fps = getTickFrequency() / ((double)getTickCount() - timer);
if (ok)
{
// Tracking success : Draw the tracked object
rectangle(frame, bbox, Scalar( 255, 0, 0 ), 2, 1 );
}
else
{
// Tracking failure detected.
putText(frame, "Tracking failure detected", Point(100,80), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0,0,255),2);
}
// Display tracker type on frame
putText(frame, trackerType + " Tracker", Point(100,20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50,170,50),2);
// Display FPS on frame
putText(frame, "FPS : " + SSTR(int(fps)), Point(100,50), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50,170,50), 2);
// Display frame.
imshow("Tracking", frame);
// Exit if ESC pressed.
int k = waitKey(1);
if(k == 27)
{
break;
}
}
}
Python
import cv2
import sys
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if __name__ == '__main__' :
# Set up tracker.
# Instead of MIL, you can also use
tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
tracker_type = tracker_types[2]
if int(minor_ver) < 3:
tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
# Read video
video = cv2.VideoCapture("videos/chaplin.mp4")
# Exit if video not opened.
if not video.isOpened():
print "Could not open video"
sys.exit()
# Read first frame.
ok, frame = video.read()
if not ok:
print 'Cannot read video file'
sys.exit()
# Define an initial bounding box
bbox = (287, 23, 86, 320)
# Uncomment the line below to select a different bounding box
bbox = cv2.selectROI(frame, False)
# Initialize tracker with first frame and bounding box
ok = tracker.init(frame, bbox)
while True:
# Read a new frame
ok, frame = video.read()
if not ok:
break
# Start timer
timer = cv2.getTickCount()
# Update tracker
ok, bbox = tracker.update(frame)
# Calculate Frames per second (FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
# Draw bounding box
if ok:
# Tracking success
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
else :
# Tracking failure
cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
# Display tracker type on frame
cv2.putText(frame, tracker_type + " Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2);
# Display FPS on frame
cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2);
# Display result
cv2.imshow("Tracking", frame)
# Exit if ESC pressed
k = cv2.waitKey(1) & 0xff
if k == 27 : break
Results in C++ and Python
Resources
- https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/.