Dennis Núñez

M.Sc. in Digital Sciences with focus in AI. Université Paris Cite


Object tracking using OpenCV 3.3.0 and C++/Python

OpenCV 3 comes with a new tracking API that contains implementations of many single object tracking algorithms. There are 6 different trackers available in OpenCV 3.2 — BOOSTING, MIL, KCF, TLD, MEDIANFLOW, and GOTURN. as mentioned before, OpenCV 3.x has tracking libraries and is easy to implement object tracking using several approaches. The code shows as follow is included here: [link].

We then open a video and grab a frame. We define a bounding box containing the object for the first frame and initialize the tracker with the first frame and the bounding box. Finally, we read frames from the video and just update the tracker in a loop to obtain a new bounding box for the current frame. Results are subsequently displayed.


C++

#include <opencv2/opencv.hpp> #include <opencv2/tracking.hpp> #include <opencv2/core/ocl.hpp> using namespace cv; using namespace std; // Convert to string #define SSTR( x ) static_cast< std::ostringstream & >( \ ( std::ostringstream() << std::dec << x ) ).str() int main(int argc, char **argv) { // List of tracker types in OpenCV 3.2 // NOTE : GOTURN implementation is buggy and does not work. string trackerTypes[6] = {"BOOSTING", "MIL", "KCF", "TLD","MEDIANFLOW", "GOTURN"}; // vector <string> trackerTypes(types, std::end(types)); // Create a tracker string trackerType = trackerTypes[2]; Ptr<Tracker> tracker; #if (CV_MINOR_VERSION < 3) { tracker = Tracker::create(trackerType); } #else { if (trackerType == "BOOSTING") tracker = TrackerBoosting::create(); if (trackerType == "MIL") tracker = TrackerMIL::create(); if (trackerType == "KCF") tracker = TrackerKCF::create(); if (trackerType == "TLD") tracker = TrackerTLD::create(); if (trackerType == "MEDIANFLOW") tracker = TrackerMedianFlow::create(); if (trackerType == "GOTURN") tracker = TrackerGOTURN::create(); } #endif // Read video VideoCapture video("videos/chaplin.mp4"); // Exit if video is not opened if(!video.isOpened()) { cout << "Could not read video file" << endl; return 1; } // Read first frame Mat frame; bool ok = video.read(frame); // Define initial boundibg box Rect2d bbox(287, 23, 86, 320); // Uncomment the line below to select a different bounding box bbox = selectROI(frame, false); // Display bounding box. rectangle(frame, bbox, Scalar( 255, 0, 0 ), 2, 1 ); imshow("Tracking", frame); tracker->init(frame, bbox); while(video.read(frame)) { // Start timer double timer = (double)getTickCount(); // Update the tracking result bool ok = tracker->update(frame, bbox); // Calculate Frames per second (FPS) float fps = getTickFrequency() / ((double)getTickCount() - timer); if (ok) { // Tracking success : Draw the tracked object rectangle(frame, bbox, Scalar( 255, 0, 0 ), 2, 1 ); } else { // Tracking failure detected. putText(frame, "Tracking failure detected", Point(100,80), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0,0,255),2); } // Display tracker type on frame putText(frame, trackerType + " Tracker", Point(100,20), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50,170,50),2); // Display FPS on frame putText(frame, "FPS : " + SSTR(int(fps)), Point(100,50), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(50,170,50), 2); // Display frame. imshow("Tracking", frame); // Exit if ESC pressed. int k = waitKey(1); if(k == 27) { break; } } }


Python

import cv2 import sys (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') if __name__ == '__main__' : # Set up tracker. # Instead of MIL, you can also use tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN'] tracker_type = tracker_types[2] if int(minor_ver) < 3: tracker = cv2.Tracker_create(tracker_type) else: if tracker_type == 'BOOSTING': tracker = cv2.TrackerBoosting_create() if tracker_type == 'MIL': tracker = cv2.TrackerMIL_create() if tracker_type == 'KCF': tracker = cv2.TrackerKCF_create() if tracker_type == 'TLD': tracker = cv2.TrackerTLD_create() if tracker_type == 'MEDIANFLOW': tracker = cv2.TrackerMedianFlow_create() if tracker_type == 'GOTURN': tracker = cv2.TrackerGOTURN_create() # Read video video = cv2.VideoCapture("videos/chaplin.mp4") # Exit if video not opened. if not video.isOpened(): print "Could not open video" sys.exit() # Read first frame. ok, frame = video.read() if not ok: print 'Cannot read video file' sys.exit() # Define an initial bounding box bbox = (287, 23, 86, 320) # Uncomment the line below to select a different bounding box bbox = cv2.selectROI(frame, False) # Initialize tracker with first frame and bounding box ok = tracker.init(frame, bbox) while True: # Read a new frame ok, frame = video.read() if not ok: break # Start timer timer = cv2.getTickCount() # Update tracker ok, bbox = tracker.update(frame) # Calculate Frames per second (FPS) fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer); # Draw bounding box if ok: # Tracking success p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1) else : # Tracking failure cv2.putText(frame, "Tracking failure detected", (100,80), cv2.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2) # Display tracker type on frame cv2.putText(frame, tracker_type + " Tracker", (100,20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50),2); # Display FPS on frame cv2.putText(frame, "FPS : " + str(int(fps)), (100,50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2); # Display result cv2.imshow("Tracking", frame) # Exit if ESC pressed k = cv2.waitKey(1) & 0xff if k == 27 : break


Results in C++ and Python


Resources

- https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/.