Dennis Núñez

M.Sc. in Digital Sciences with focus in AI. Université Paris Cite


Using the Expectation Maximization (EM) algorithm in C++ using OpenCV 2.4

The Expectation Maximization(EM) algorithm estimates the parameters of the multivariate probability density function in the form of a Gaussian mixture distribution with a specified number of mixtures.


Background extraction using EM algorithm

OpenCV 2.4.9 will be used in this example. The next image will be classify in foreground and background using the EM algorithm.

Create a file example_em.cpp:

#include <opencv2/opencv.hpp> #include <opencv2/legacy/legacy.hpp> int main(int argc, char** argv) { cv::Mat source = cv::imread("12_test-example_em.jpg"); //ouput images cv::Mat meanImg(source.rows, source.cols, CV_32FC3); cv::Mat fgImg(source.rows, source.cols, CV_8UC3); cv::Mat bgImg(source.rows, source.cols, CV_8UC3); //convert the input image to float cv::Mat floatSource; source.convertTo(floatSource, CV_32F); //now convert the float image to column vector cv::Mat samples(source.rows * source.cols, 3, CV_32FC1); int idx = 0; for (int y = 0; y < source.rows; y++) { cv::Vec3f* row = floatSource.ptr<cv::Vec3f > (y); for (int x = 0; x < source.cols; x++) { samples.at<cv::Vec3f > (idx++, 0) = row[x]; } } //we need just 2 clusters cv::EMParams params(2); cv::ExpectationMaximization em(samples, cv::Mat(), params); //the two dominating colors cv::Mat means = em.getMeans(); //the weights of the two dominant colors cv::Mat weights = em.getWeights(); //we define the foreground as the dominant color with the largest weight const int fgId = weights.at<float>(0) > weights.at<float>(1) ? 0 : 1; //now classify each of the source pixels idx = 0; for (int y = 0; y < source.rows; y++) { for (int x = 0; x < source.cols; x++) { //classify const int result = cvRound(em.predict(samples.row(idx++), NULL)); //get the according mean (dominant color) const double* ps = means.ptr<double>(result, 0); //set the according mean value to the mean image float* pd = meanImg.ptr<float>(y, x); //float images need to be in [0..1] range pd[0] = ps[0] / 255.0; pd[1] = ps[1] / 255.0; pd[2] = ps[2] / 255.0; //set either foreground or background if (result == fgId) { fgImg.at<cv::Point3_<uchar> >(y, x, 0) = source.at<cv::Point3_<uchar> >(y, x, 0); } else { bgImg.at<cv::Point3_<uchar> >(y, x, 0) = source.at<cv::Point3_<uchar> >(y, x, 0); } } } cv::imshow("Means", meanImg); cv::imshow("Foreground", fgImg); cv::imshow("Background", bgImg); cv::waitKey(0); return 0; }

Then, compile using:

g++ -I/usr/local/include/opencv -I/usr/local/include/opencv2 -L/usr/local/lib/ -g -o binary example_em.cpp -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_legacy -o example_em

Finally, run using:

./example_em

The command above should show the next result:


Resources

- https://docs.opencv.org/2.4/modules/ml/doc/expectation_maximization.html.